New data yields deeper understanding of poverty in India
A new international study led by UvA researchers Peter Sloot and Michael Lees has yielded extensive data on slums in Bangalore and provides a detailed insight into the problem of poverty in India. The highly granular data, which was collected through a field survey of 36 slums, could lead to a better understanding of poverty and to more effective strategies for managing and improving conditions for slum dwellers. The results were recently published in the journal Nature Scientific Data.
In 2010, an estimated 860 million people were believed to be living in slums worldwide. In order to formulate effective slum development programs and poverty alleviation methods, more insight is needed into the characteristics and needs of slum dwelling communities. As part of their study, the researchers collected data to gain a more complete picture of the problem and developed predictive computer models. ‘Until now, the available data wasn’t sufficient enough to build the advanced computer models needed to calculate intervention scenarios’, says Sloot, who is professor of Computational Science and director of the UvA’s Institute for Advanced Study.
The research carried out within the projects DynaSlum and SIM-CITY is partly funded by the Netherlands Organisation for Scientific Research and the Netherlands eScience Center.
More info HERE
Read More
-
ADS’s Integration with Amsterdam AI – Next Steps
From September onwards Amsterdam Data Science will merge media channels with Amsterdam AI. Any online activities you are used to will continue on the Amsterdam AI channels. So please register below to stay up to date!
-
ADS’s Integration with Amsterdam AI – Next Steps
Amsterdam Data Science is excited to announce the next step in joining forces with Amsterdam AI. Together, we will support Amsterdam’s development as an international hub for Responsible AI.
-
Data Science Center starts groundbreaking research program on AI with all 7 UvA Faculties
The UvA Data Science Center is announcing a groundbreaking research program to align artificial intelligence (AI) for the interpretation of video data with human values and ethical principles.