Artificial intelligence, IoT

IoT as an enabler of AI: Revolutionizing fish production

  • Lukas Winkler
    Lukas Winkler
With the use of IoT and AI, the Blue Planet Ecosystems (BPE) bioreactor can farm fish in any location. The founders of the biotech startup want to revolutionize methods of food production. In their artificial ecosystems, they produce fish from sunlight. In this concept, algae, water, sunlight and IoT support fish-farming in containers.

The Internet of Things (IoT) is a hardware/software ecosystem that includes the ‘things’ side, typically composed of network-enabled sensors (light, temperature, distance), which connect and exchange data with actors (motors, servos, heaters, pumps).

This technology enables AI by providing a constant stream of real-time or historical data while assuring its quality. This particular process ensures that AI applications achieve optimal results when solving data-driven problems. Applying AI in remote areas where continuous connection to the internet is not guaranteed requires that AI solutions have to be scalable and fail-safe to avoid data loss and provide consistent performance.

The Internet of Fish

The marine environment is suffering from unsustainable fishing practices. Traditional aquaculture is not an environmentally friendly alternative, as most methods do not completely separate themselves from the natural environment, thus continuing to impact the surrounding marine ecosystem.

Farms can be installed on any piece of land to produce fresh seafood close to the consumer

BPE has taken a different approach by replicating natural aquatic ecosystems. It achieves this by building bioreactors that convert sunlight into algae, algae into plankton, and then plankton into fish. Bioreactors are equipped with sensors that generate data representing the state of health of the ecosystem. Actors include light switches, pumps, feeders and heaters that are enabled at the appropriate time so the ecosystem remains healthy.

By taking a data-driven approach BPE, supported by Cloudflight implementing the required cloud based components, have created sustainable seafood sources in urban and desert environments.

IoT Enables AI

IoT enables data collection to train AI models that balance the various input parameters. These are transmitted back to the actors to maintain an optimal state of the ecosystem.

The IoT system consists of:

  • A hardware-software ecosystem;
  • A software platform that manages the ‘things’ and the data they generate;
  • Feedback loops that translate the analysed data into new input for the ’things’ (e.g., a higher target temperature based on school movement observations that indicate that the fish are affected by cold);
  • A repository of data-based user applications such as dashboards for visualization or machine learning models for predictive maintenance.

Converting Data into Fish

Fish-farming is costly and labour-intensive. The BPE artificial ecosystem is completely automated and uses only a few resources, “manufacturing” fish independently of human intervention.

A LARA stack consisting of three levels: the photobioreactor, the zooplankton unit and the fish unit

The IoT sensors are used to constantly measure many parameters including temperature, light and oxygen content of the water. Video streams from several cameras detect and monitor the fish and their movements. From these videos, BPE is able to extract biological data. This is done by applying object detection to first recognize all fish in frame and later deduce their vitality by tracking and reconstructing the swarm movement across multiple frames and assigning a “vitality” value to each individual fish.

The information derived from the sensors is used to regulate the state of the system to optimize the well-being of the fish and their growth. In addition, all values are recorded and analysed in order to optimize the bioreactor. Manual control is, however, always possible via a web interface to enable intervention in the event of any problems.

The Role of Domain Experts

Data scientists and AI experts alone can rarely be used to improve processes. Often it is the combination of domain knowledge (in BPE’s case, aquaculture experts), data scientists and enablers such as IoT that work together to tackle problems that previously seemed unsolvable.

Knowing about how the data is collected and initially processed impacts the work of data scientists. For example, a machine that is switched off over the weekend might produce “anomalous” data on Monday mornings just because it needs to heat up first. Knowledge such as this can easily be gained by involving domain experts. If the project team cannot rely on the presence of domain experts then the amount of data that needs to be collected to achieve the same confidence is usually higher.

By combining expertise from domain experts, such as BPE in fish farming, and technical expertise from Cloudflight, novel solutions can be found to critical human problems. In this case we can see an innovative and environmentally friendly solution to fish farming.

Read More

  • Managing/Being a Master’s Student during a Pandemic

    For the past five years, Elsevier has been an enthusiastic participant in the UvA Master’s Student programme. In total, more than 45 students have been supervised by researchers across the company, which has led to 12 new recruits for our Data Science teams.

    • Magdalena Mladenova
      Magdalena Mladenova
    • Anita de Waard
      Anita de Waard
    • Thom Pijnenburg
      Thom Pijnenburg
  • Data as a material for fashion: How treating data as a material enables a new future for design

    Data Science is rapidly changing industries around the world, yet the digital transformation remains difficult for Fashion. Fashion (Design, Business, Branding, and Marketing) has never been known for maths geniuses. (There are a few, but they keep it a secret.) While maths and data may not be a given in the industry, people who work in fashion are material experts. So what would it mean if we treated data as if it were a material?

    • Troy Nachtigall
      Troy Nachtigall
  • Programming Training for Refugees

    In August 2020, VodafoneZiggo and Accenture wrapped up their three-month CodeMasters training programme for refugees. The training course was tailor-made to help refugees integrate in the Dutch labour market by teaching participants to write computer code.

    • Gabriel Lopez
      Gabriel Lopez